dorobku naukowo-badawczego, dydaktyczno-organizacyjnego i osiągnięcia naukowego dr n. med. Jacka Drobnika, starszego wykładowcy w Zakładzie Badań Neuropeptydów, Katedry Patologii Ogólnej i Doświadczalnej, Wydziału Nauk o Zdrowiu, Uniwersytetu Medycznego w Łodzi, wykonana na zlecenie Centralnej Komisji, w związku z postępowaniem o nadanie stopnia naukowego doktora habilitowanego nauk medycznych w dyscyplinie medycyna.

I. Dane biograficzne


Przedmiotem głównego zainteresowania naukowego Kandydata jest regulacyjna funkcja szyszynki w metabolizmie kolagenu i glikozoamigolikanów w tkankach.
II. Ocena dorobku naukowo-badawczego

Dorobek naukowy dr Jacka Drobnika obejmuje 27 publikacji (w tym 21 oryginalnych prac eksperymentalnych i 6 poglądowych), a także 41 komunikatów prezentowanych na konferencjach krajowych (21) i międzynarodowych (20). Spośród 13 prac opublikowanych w czasopismach z listy filadelfijskiej, posiadających łączny IF = 26,926 (245 punktów MNiSW) Kandydat wyodrębnił 5 prac o łącznym IF = 13,891 (126 punktów MNiSW), stanowiących szczególne osiągnięcie (w myśl art. 16 ust. 2 Ustawy z 14 marca 2003, o stopniach naukowych i tytułach naukowych, Dz.U. z 2003 r., nr 65, poz. 595, Dz.U. z 2005 r., nr. 164, poz. 1365, Dz.U. z 2011 r., nr. 84, poz. 455).

W początkowym okresie działalności badawczej zainteresowania Habilitanta skupione było na biochemii tkanki łącznej w przebiegu gojenia ran skórnych u szczurów oraz roli histaminy w tym procesie. Stosując model farmakologiczny stabilizacji komórek tucznych wykazano pobudzający wpływ histaminy na kumulację kolagenu w z iarminie rany. Badania te stanowiły podłoże dalszych eksperymentów nad wpływem histaminy na biosyntezę kolagenu w miofibroblastach z blizn pozawałowych. Wykazano udział receptora H3 w omawianym procesie. Działalności badawczej w tym okresie towarzyszyło doskonalenia warsztatu badawczego w zakresie oceny jakościowej i ilościowej składników macierzy pozakomórkowej oraz metodologii wywoływania eksperymentalnej hipercholesterolemii i nadciśnienia. Habilitant badał bowiem wpływ tych bodźców aterogennych na mechanizm uszkodzenia i przebieg procesu gojenia aorty piersiowej i brzusznej szczury. Szczególnie interesującym osiągnięciem naukowym w tym okresie było wykazanie wzrostu ilości siarczanu heparanu w tętnicy w przebiegu nadciśnienia i hipercholesterolemii z jednoczesnym hamowaniem biosyntezy kolagenu.

Tematyka dalszej działalności badawczej związana była z analizą glikozoaminoglikanów i kolagenu w sercu po zawale, wpływem niedoczynności tarczycy na ten proces oraz farmakologicznymi sposobami pobudzania procesu gojenia ran u szczurów. Ważnym odkryciem było wykazanie zależności pomiędzy niedoczynnością tarczycy a wzrostem składników ECM w sercu tych zwierząt.

Warsztat badawczy Habilitanta wykorzystujący model zawału mięśnia sercowego umożliwił podjęcie współpracy w zakresie badań nad receptorem angiotensyny w gruczoł krokowym szczura po zawale. Wykazano, że w przebiegu zawału mięśnia sercowego szczura następuje wzrost mRNA i białka receptora AT1 w badanej tkance.

Kandydat poświęcił sporą uwagę niektórym aspektom farmakoterapii gojenia ran, zwłaszcza mechanizmowi korzystnego działania dibutyrylchityny i polimerów tego związku jako materiału implantacyjnego na proces naprawy uszkodzeń tkankowych.

Przedmiotem szczególnego zainteresowania Kandydata w całym okresie działalności badawczej jest jednak ocena wpływu melatoniny na metabolizm składników tkanki łącznej, uszkodzonej różnymi czynnikami. Wyniki niektórych badań z tego zakresu zamieścił w rozprawie doktorskiej pt. „Wpływ melatoniny na poziom niektórych elementów tkanki łącznej w gojących się ranach u szczurów”.
W cyklu dalszych prac Habilitant wykazał hamujący wpływ melatoniny na sekrecję wazopresyny i oksytocyny, hormonów stanowiących odpowiedź neuroendokrynną organizmu na niewydolność krążenia w przebiegu zawału. Zmiany wydzielania tych hormonów zaobserwowano również pod wpływem hormonów tarczycy.

Wyniki powyższych badań stały się inspiracją do zbadania wpływu melatoniny na zawartość kolagenu i glikozoaminoglikanów w mięśniu sercowym po zawale. Wynikiem tych badań jest cykl 5 prac, stanowiących szczególne osiągnięcie naukowe pod nazwą „Wpływ szyszynki na zawartość kolagenu i glikozoaminoglikanów w sercu po zawale”

Dorobek naukowy Habilitanta jest monotematyczny i dowodzi opanowania oryginalnego warsztatu badawczego, który przysporzył mu wartościowego dorobku naukowego.

III. Ocena osiągnięcia naukowego określonego w art.16 ust.2 Ustawy z 14 marca 2003, o stopniach naukowych i tytule naukowym, Dz.U. z 2003r., nr 65, poz.595, Dz.U. z 2005 r., nr. 164, poz. 1365, Dz.U. z 2011 r., nr.84, poz. 455).

Przedmiotem oceny znaczącego osiągnięcia naukowego jest cykl 5 prac współautorskich w których Habilitant opisuje wyniki badań nad mechanizmem udziału melatoniny w regulacji zawartości głównych składników macierzy pozakomórkowej (ECM) - kolagenu i glikozoaminoglikanów w tkance mięśnia sercowego objętego zawałem.

Tematyka badawcza osiągnięcia naukowego Habilitanta jest zatem konsekwencją zainteresowań poszukiwaniem nowych i skuteczniejszych rozwiązań terapeutycznych włóknienia narządów. Ten kierunek badań konsekwentnie realizowany przez wiele lat pozwolił na podsumowanie osiągniętych wyników i przedyskutowanie perspektyw ich praktycznego wykorzystania. Osiągnięcie naukowe pt. "Wpływ szyszynki na zawartość kolagenu i glikozoaminoglikanów w sercu po zawale" stanowią prace doświadczalne zamieszczone w czasopismach o łącznym współczynniku oddziaływania IF =13,891 (126 punktów MNiSW). We wszystkich 5 pracach opublikowanych w latach 2008-2013 dominująca rola dr Jacka Drobnika w koncepcji, organizacji pracy i przeprowadzeniu doświadczeń została potwierdzona stosowymi oświadczeniami współautorów. We wszystkich 5 pracach Habilitant jest pierwszym autorem. Autor osiągnięcia naukowego przeprowadził kompleksową ocenę porównawczą wpływu melatoniny w warunkach „in vivo” oraz „in vitro” na zawartość kolagenu i glikozoaminoglikanów w bliźnie pozawałowej serca szczuora.

Wybór oceny ilościowej kolagenu i glikozoaminoglikanów w badanych tkankach jest trafny. Glikozoaminoglikany i kolagen, stanowiące główne składniki macierzy pozakomórkowej pełnią szereg ważnych funkcji zarówno podporowych jak i metabolicznych. Szczególnie ważną rolę odgrywają w procesie gojenia ran. Większość funkcjonalnych ich właściwości uzależniona jest od ich interakcji z innymi składnikami tkanne. Poprzez wzajemne interakcje kolagen i glikozoaminoglikany wyznaczają strukturę i właściwości mechaniczne substancji międzykomórkowej a także wiązą czynniki wzrostowe, stanowiąc ich rezerwuar wykorzystywany w procesach naprawczych tkane. Kolagen jest także ligandem receptorów integrynowych poprzez które indukuje szlaki sygnałowe w komórkach.
pobudzające ekspresję genów, których produkty odgrywają ważną rolę w procesach regeneracyjnych uszkodzeń tkankowych.

Habilitant zastosował wiele modeli eksperymentalnych in vivo: wywołanie zawału mięśnia sercowego, pinealektomię chirurgiczną i farmakologiczną (atenolol) oraz in vitro: hodowle mioszibroblastów uzyskanych z blizn pozawałowych mięśnia sercowego.

Przedmiotem analizy była ocena wpływu dawki melatonin, czasu podania (uwzględniająco dobory rytm jej wydzielania), rodzaju pinealektomii, obecności inhibitory receptoru melatonin (luzindolu) i innych czynników na zawartość omawianych składników ECM w badanej tkance.

Habilitant przedstawił dowody udziału melatonin w regulacji metabolizmu kolagenu i glikozoaminoglikanów w tkance serca z eksperymentalnie wywołanym zawałem poprzez ocenę zawartości tych składników ECM w bliźniej pozawałowej. Zarówno w doświadczeniach in vivo jak i in vitro wykazał pobudzające działanie melatonin na zawartość kolagenu w bliznie pozawałowej. Natomiast w badaniach in vitro na mioszibroblastach pochodzących z blizny pozawałowej serca, w odniesieniu do glikozoaminoglikanów, zaobserwował przeciwnawodny efekt. Pinealektomia zarówno chirurgiczna jak i farmakologiczna powodowała natomiast obniżenie zawartości kolagenu w bliźnie pozawałowej. Zjawiska tego nie można przypisać zmianie ekspresji podjednostki α1 genów kolagenu typu I i III bowiem zarówno podanie zwierzętom melatonin jak również chirurgiczna pinealektomia nie wpływały na ten proces. Doświadczenie to sugeruje istnienie post-translacyjnego mechanizmu udziału melatonin w metabolizmie kolagenu. Jednakże jednoczesna pinealektomia i podawanie dootrzewnowe melatoninu pobudzało ekspresję omawianych genów kolagenu. Wynik tego doświadczenia stanowi podłoże odkrycia Kandydata, którego nazwa zawarta jest w tytule szczególnego osiągnięcia naukowego. Ma ono charakter badań patofizjologicznych, które mogą stanowić inspirację do wyjaśnienia biochemicznego mechanizmu odrębności działania melatonin na metabolizm kolagenu i glikozoaminoglikanów w mięśniu sercowym po zawale u zwierząt z zachowaną i usuniętą szyszynką. Jednym z tych mechanizmów może być wykazany przez Habilitanta udział receptorów melatonin w omawianym procesie.

W cyklu doświadczeń Kandydat wykazał ponadto zróżnicowany wpływ dawek melatonin (podawanej zwierzętom dootrzewnowo) i specyficzności jej tkankowego działania na kolagen i glikozoaminoglikany blizny pozawałowej serca szczura oraz rany powierzchniowej skóry. Różnice tych Habilitant upatruje w bezpośrednim wpływie melatonin na mioszibroblasty blizny pozawałowej szczura oraz pośrednim wpływie tego hormonu na proces gojenia ran skórnych. Obserwacja ta stanowi kolejną inspirację do zbadania molekularnego mechanizmu tych różnic.

Habilitant przedstawił ponadto dowody antyoksydacyjnego działania melatonin, stanowiące oryginalne i prawdopodobnie pierwsze doniesienie o nieznanej dotąd aktywności tego hormonu.

Wyniki przeprowadzonych przez Habilitanta badań są zatem ważne z punktu widzenia farmakoterapeutycznego i klinicznego. Poznanie endogennych mechanizmów gojenia uszkodzeń pozawałowych serca pozwoli na doskonalenie farmakoterapii tej choroby.

Opisanie powyższych zjawisk stanowi oryginalne osiągnięcie naukowe Habilitanta dokumentujące ważną rolę melatonin w procesie naprawy uszkodzeń mięśnia sercowego wywołanym niedotlenieniem.
Powyższe badania realizowane były w ramach 9 projektów badawczych, w tym 3 finansowanych przez KBN/MNiSW, spośród których Habilitant w dwóch był kierownikiem projektu, jednego grantu NCN gdzie Kandydat pełnił funkcję głównego wykonawcy, jednego grantu europejskiego w ramach PR5, gdzie pełnił rolę podwykonawcy i 4 projektów finansowanych z działalności statutowej Uczelni.

IV. Ocena dorobku dydaktyczno-organizacyjnego


Działalność dydaktyczno-naukową prowadzi również jako opiekun i promotor prac magisterskich.

Dr Jacek Drobnik przejawia ponadto aktywność organizacyjną współpracując z wieloma instytucjami naukowymi, między innymi z Instytutem Chemii Fizjologicznej i Patobiocem Uniwersytetu w Munster, Akademią Medyczną w New Jersey, Politechniką Łódzką, Uniwersytetem w Łodzi i jednostkami Uniwersytetu Medycznego w Łodzi.


Reasumując stwierdzam, że dr Jacek Drobnik jest doświadczonym dydaktykiem i sprawnym organizatorem, pełniącym ważne funkcje w życiu Uczelni oraz środowisku akademickiego.
V. Wniosek końcowy

Dobroń naukowy dr Jacka Drobnika obejmuje 27 publikacji (w tym 21 oryginalnych prac eksperymentalnych i 6 poglądowych), a także 41 komunikatów prezentowanych na konferencjach krajowych (21) i międzynarodowych (20). Spośród 13 prac opublikowanych w czasopismach z listy filadelfijskiej, posiadających łączny IF=26,926 (245 punktów MNiSW, wg Web of Science index cytowani=120, HI=6) Kandydat wyodrębnił 5 prac o łącznym IF = 13,891 (126 punktów MNiSW), stanowiących szczególne osiągnięcie (w myśl art.16 ust.2 Ustawy z 14 marca 2003, o stopniach naukowych i tytułach naukowych, Dz.U. z 2003 r., nr 65, poz.595, Dz.U. z 2005 r., nr. 164, poz. 1365, Dz.U. z 2011 r., nr.84, poz. 455). Publikacje te stanowią oryginalny i twórczy wkład do wiedzy o regulacyjnej funkcji szyszynki w metabolizmie kolagenu i glikozaminoglikanów w tkankach, zwłaszcza miejsca sercowego po zawale. Niektóre z tych prac formułują nowe hipotezy o dużym znaczeniu z punktu widzenia farmakoterapeutycznego i klinicznego. Poznanie endogennych mechanizmów gojenia uszkodzeń pozawałowych serca pozwoli bowiem na doskonalenie farmakoterapii tej choroby.

Niemal 25 letnie doświadczenie w pracy dydaktycznej i kształceniu młodej kadry naukowej oraz osiągnięcia naukowe pozwalają zaliczyć dr Jacka Drobnika do wyróżniających się nauczycieli akademickich. Wysoka aktywność dydaktyczna i organizacyjna świadczy o ważnej roli jaką pełni w życiu środowiska akademickiego Wydziału i Uczelni.

Powyższe argumenty upoważniają mnie do przedłożenia Wysokiej Radzie Wydziału Nauk o Zdrowiu Uniwersytetu Medycznego w Łodzi wniosku o dopuszczenie dr Jacka Drobnika do dalszych etapów postępowania habilitacyjnego.

16.06.2014

KIEROWNIK
Zakładu Chemicznych Leków

prof. dr hab. Jerzy Palca